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Total synthesis of pachastrissamine (jaspine B) enantiomers
from DD-glucose
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Abstract—Synthesis of both enantiomers of pachastrissamine is described from a common chiral template. The stereoselective con-
struction of the central tetrahydrofuran units was based on the pseudodesymmetrization of a pentodialdo-1,4-furanose derivative
taking advantage of the latent symmetry present.
� 2006 Published by Elsevier Ltd.
Pachastrissamine (1, Fig. 1), isolated and characterized
by Higa and co-workers in 2002 from the Okinawa mar-
ine sponge Pachastrissa sp. (family Calthropellidae) is a
novel anhydrophytosphingosine with important bio-
activity.1 It was later (in 2003) isolated from another
marine sponge, genus Jaspis by Debitus and co-workers
and named as jaspine B.2 The structure of 1 and the all-
cis geometry of the THF ring was assigned by spectros-
copy, largely NMR, and the (2S,3S,4S) configuration of
the ring carbon atoms was determined on the basis of
(S)- and (R)-MTPA derivatization on the N-monoacet-
ylated pachastrissamine. This was reported to exhibit
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Figure 1. The key pseudodesymmetrization strategy for (+)- and (�)-pachas
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promising cytotoxic activity in the submicromolar range
against P388, A549, HT29, and MEL28 (IC50 = 0.001
lg/mL) cell lines. Its simple structure and this promising
biological activity have stimulated substantial synthetic
work, culminating in several total syntheses.3–7 In this
letter we wish to report a chiral pool synthesis of both
1 and its antipode 2 starting from a single chiron.

As shown in Figure 1, our intended strategy exploited
the pseudosymmetry present in pentodialdo-1,4-fura-
nose 98 to derive enantiomeric azidoalkynes 3 and 4,
which upon alkylation and hydrogenation should result
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in the synthesis of 1 and 2, respectively.9 We anticipated
that the two enantiomeric furan systems 5 and 6 could
be fashioned efficiently by employing selective Ohira–
Bestmann alkynylation at either end of 9. The Ohira–
Bestmann alkynylation at C(5) is a direct proposition,
whereas for the Ohira–Bestmann alkynylation at C(1),
we were interested in the acid mediated ring isomeriza-
tion of 8.

Prior to the discussion on the synthesis of enantiomeric
alkynols 5 and 6, it is pertinent to mention that while
our work was in progress furanoaldehyde 7 was pre-
pared and used by Linhardt and co-workers5 for the
synthesis of natural pachastrissamine (1). The synthesis
of alkynol 5 started with reduction of the easily available
dialdofuranose 9 (prepared from DD-glucose following
the literature procedure, Scheme 1) with NaBH4.10

Tosylation of 10 using p-TsCl in pyridine followed by
acid mediated acetonide deprotection with concomitant
2,5-ring closure gave dimethylacetal 11 in a good yield.
The following acetal hydrolysis reaction proceeded with
2 N sulfuric acid in acetic acid and the resulting alde-
hyde 7 was subjected to Ohira–Bestmann alkynylation
under standard conditions.11

Alkynol 6 was prepared in two steps from 9 by first sub-
jecting it to the Ohira–Bestmann alkynylation and then
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Scheme 1. Reagents and conditions: (a) NaBH4, MeOH, 0 �C, 2 h; (b) p-TsC
2 N, H2SO4, 50% AcOH, 9 �C, 2 h; (e) (MeO)2P(@O)C(@N2)COCH3, metha

Figure 2. ORTEP structure of compound 15.
reductive deketalization12 of the resulting alkyne 1213

using excess triethylsilane in the presence of BF3ÆEt2O.
The spectral data of 6 were comparable with its antipode
5.14

Once we had easy access to enantiomeric alkynols 5 and
6, the stage was set for the synthesis of the mirror iso-
mers of pachastrissamine. Thus, alkynols 5 and 6 were
transformed to the corresponding azidoalkynes 3 and
4 by treatment with Tf2O in pyridine followed by react-
ing the intermediate triflates with LiN3 in DMF. The
spectral and analytical data of compounds 3 and 4 were
in agreement with the proposed structures.15 After
examining a set of bases and reaction conditions, we
concluded that the alkylation of azidoalkynes 3, 4 with
1-bromododecane was facile using n-BuLi in THF-
HMPA and the alkylated products 13 and 14 were
obtained in 61% and 57% yields, respectively.16 Hydro-
genolysis of 13 and 14 was effected by refluxing in meth-
anol in the presence of ammonium formate and cat. 10%
Pd/C. The requisite pachastrissamine enantiomers were
characterized either after chromatographic purification
or as their diacetates 15 and 16, respectively (Scheme
2). The spectral and analytical data of the 1 and its diac-
etate 1517 were in agreement with the reported values
and the structure of 15 was further established by single
crystal X-ray analysis (Fig. 2).18–20
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Scheme 2. Reagents and conditions: (a) (i) Tf2O, pyridine, CH2Cl2, 0 �C, 6 h; (ii) LiN3, DMF, rt, 12 h; (b) n-BuLi, THF:HMPA (7:1), C12H25Br, �78
to �40 �C, 1 h; (c) 10% Pd/C, ammonium formate, MeOH, reflux, 10 h; (d) Ac2O, Et3N, DMAP, CH2Cl2, rt, 6 h.
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In summary, we have reported a simple chiral pool strat-
egy for the synthesis of both enantiomers of pachastriss-
amine starting with DD-glucose. The synthesis is
sufficiently flexible to allow substitution or variation in
the length of the side chain to synthesize analogues.
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